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ABSTRACT

In recent years, it has been found that interdependence of the
rotations of neighboring bonds is of primary importance to the physical
behavior of polymers. Mathematical methods for handling interdependent
rotations were developed by Lifson and others for the calculation of
characteristic polymer dimensions. The Gibbs-DiMarzio theory of the glass
transition in polymers is formulated in such a way that interdependent
rotations may be taken into account. Using an empirically estimated value
of 0.025 for the free volume fraction at the transition temperature, the
Gibbs-DiMarzio theory was fitted to empirically estimated transition
temperatures for the n-alkanes, hexane to eicosane. A good fit was obtained
with C I = 768 cal/mole for the energy difference between trans and gauche
states, and gauche rotations of opposite sign excluded.

The Adam-Gibbs theory of relaxation processes links the
viscosity or relaxation time of a polymer to an energy barrier APt
independent of temperature, and an independently rearranging region con-
taining z* segments, where z* varies inversely with temperature. Values of
z* calculated from our viscosity data, assuming a minimum value of k ln 2
for the configurational entropy of the critical region, were unreasonably
small: one to four segments. A theory is presented by means of which z*
may be calculated from (d ln T /dP)T, avoiding the need for the k ln 2
assumption. Using published data in addition to our own, the following
values of z* (Tg) and r* (Tg), the radius of the critical region at the
glass temperature, were found:

z*(Tg) r*(Tg)

Poly(propylene oxide) 220 11.6 'A
Poly(vinyl acetate) 341 17.0
Poly(vinyl chloride) 804 19.4

The average number of backbone bonds in a single chain
through the critical region may be calculated from the above results. Chains
were generated on a diamond lattice using a Monte Carlo technique, and the
computed chain lengths for the three polymers ranged from 10 to 17.
These are of the expected order of magnitude. Using these values of s in
the cell theory developed earlier in this contract, along with viscosity-
temperature data, the glass temperature may be accurately predicted.
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1. Glass Transitions in One-Dimensional Cooperative Systems

A. Introduction

The physical behavior of a liquid depends upon interactions
between each molecule and its neighbors. As a first approximation, only
nearest neighbors need be considered. Even so, the statistical treatment
of such a three-dimensional cooperative system meets with serious difficulties.
It would appear at first glance that the additional complications introduced
by the long-chain nature of polymers would make the problem even more
intractable. However, a polymer segment interacts much more strongly with
the two neighbors to which it is bonded than with the others, so that it is
possible to treat a polymer as a one-dimensional cooperative system with
a relatively small correction for non-bonded neighbors.

Statistical methods of treating one-dimensional cooperative
systems were first developed by IsingI and by Kramers and Wannier 2 in
connection with the theory of ferromagnetism. Each unit is assumed
capable of a discrete number of orientations whose energy depends on the
orientation of its neighbors. Designating these orientations (or
conformations) by (p a, b, --- and assuming that all units have identical
sets of conformations, then in the nearest-neighbor approximation, the energy
of a chain of n units is given by

n

E (Yi' 2' -- ' Pn) Z C ((Pk-l' (Pk) (1)

k=l

where the summation is carried out over all pairs (k-l, k) which are
nearest neighbors and F (k-l,Q k) are the interaction energies. The
statistical weight matrix for each pair of units is a square array of order
f, where f is the number of orientations available to each unit,

U g~ fpa) g (Y ia9 (2)

and g = exp [-C ((?k-l, O)k)/kT]. The partition function for such a
system is given 3 by

Q =1/2 jT 2 un- 3 j (3)

where J is the f x 1 column matrix, each element of which is unity, and jT
is its transpose. In the polymer chain of n bonds to which Equation (3)
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applies, the terminal bonds have equal energy in all rotational isomeric
states and the second bond has a unique statistical weight matrix U2
which must be determined individually. A symmetry number of 1/2, not
considered in Reference (3), has been included in Equation (3).

In the case of long chains, Equation (3) reduces to

= n (n>l) (4)

where A is the largest eigenvalue of the matrix U4.

The physical properties of polymers in dilute solution are
expected to conform with those of the model of a one-dimensional cooperative
system described above. That is, interactions between polymer chains may be
ignored provided the solution is sufficiently dilute. In good solvents,
long-range interactions between polymer segments perturb the chain behavior,
but at the Flory 9 point, interactions with solvent exactly compensate for
long range segment interactions and the nearest-neighbor approximation is
valid. Solvent effects on the unperturbed dimensions are small and may
be taken into account by appropriate adjustments of the statistical weights
in matrix U.

The physical properties of polymers in dilute solution which can be
compared with the theory are the mean-square end-to-end length, dipole
moment and optical anisotropy. The calculations involve matrices for the
transformation of a vector in the coordinate system of bond k into that of
bond k-1, as well as the statistical weight matrix U. Such calculations have
been done for the one-dimensional cooperative model by Lifson, 5 Gotlib, 6

Hoeve, 7 Nagai and Ishikawa, 8 Birshtein and Ptitsyn4 and Flory and co-workers. 3 9

The agreement found with the experimental end-to-end length and its
temperature coefficient and with experimental dipole moments demonstrates
the applicability of the model to polymers in dilute solution. These results
also demonstrate that neglect of correlations of orientations of neighboring
units would invalidate the theory.

The temperature dependence of the end-to-end distance of polymer
chains has immediate consequences to the theory of rubber elasticity. 1 0

The theory of one-dimensional cooperative behavior is applied to undiluted
networks of polymer chains by making the reasonable assumption that the
change in equilibrium configurational entropy due to stretching is
independent of the environment. Neighboring chains influence the
configurational entropy and the rate of approach to equilibrium, but not
the equilibrium difference in entropy between the stretched and unstretched
states. The agreement between the predictions of this theory and experimental
values of the retractive force as a function of temperature lends credence
to the basic assumptions of rotational isomerism and one-dimensional
cooperation.
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The body of evidence described briefly above concerning the
importance of intramolecular cooperative effects in polymer chains has
been largely ignored in connection with the problem of the glassy state.
This section is concerned with the incorporation of this feature into the
Gibbs-DiMarzio theory of the glass transition.

B. Gibbs-DiMarzio Theory

The Gibbs-DiMarzioII treatment of the thermodynamic properties of
amorphous polymers is based on a lattice model, similar to that of Flory1 2

and Huggins. 1iA system of Nx polymer chains of x units each is placed
on a lattice of coordination number z in such a way that a fraction
Vo = No/(No + x Nx) of the lattice sites are vacant. Each backbone bond
is capable of assuming f distinct orientations relative to the preceding
bonds, the lattice of coordination number f + 1 being a sublattice of the
other. The energy of each chain is a function of the relative orientations
of the bonds, which can be expressed as in the nearest-neighbor approximation
by Equation (1).

Certain sets of conformationally specified chains cannot be
packed on a lattice in disordered array with reasonable values of Vo. This
gives rise to a negative configurational entropy at low temperatures,
although the entropy has normal positive values at higher temperatures. A
second-order transition occurs at the temperature T2 at which the
configurational entropy Sl goes to zero. At higher temperatures the entropy
is given1 1 by

81 - z-2 (In + in (Vo z/2-1/so z/2

RxNx 2 So l-Vo

I[(z-2)x+2J(z-l)+ x"Iin + x-1 (In 0, + T d in Q/dT) ,(5)

2

where So = 1 - Sx and

[(z-2)x + 2INx

X [(z-2)x+2]Nx + zNo

A significant feature of this treatment is that contributions
arising from conformational properties of isolated chains appear as separate
terms in the final equation, so that the partition function calculated for
the one-dimensional chain can be used directly to calculate the configurational
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entropy of a three-dimensional system. It follows from Equations (2), (3)
and (5) that the glass temperature for a given pure homopolymer is determined
by the appropriate values of z, Vo, x and the statistical weight matrices U.
The relation (5) is transcendental, but may be solved by iteration methods.

As a result of this separation of the inter- and intramolecular
factors in the theory, quantitative applications to experimental data fall
naturally into two classes: phenomenological relations between physical
properties which are dependent only on z, Vo and, through the relations
given in References (11) and (1 4 ), on the intermolecular pair potentialO(
and the volume of a lattice site C(T); and relations between the transition
temperature and the molecular properties x, n and U. As an example of the
former, Voeks 1 5 has used the theory to estimate the cohesive energy density
and internal pressure of several polymers from density data alone, finding
satisfactory agreement with experimental values.

Previous workers who have applied the theory to experimental
transition temperatures have made the simplifying assumption that rotations
of neighboring bonds are uncorrelated. Furthermore, the only case which has
been considered is the chain in which all bonds have one conformer of low
energy and two equivalent conformers higher in energy by some amount £
Under these conditions Equation (3) reduces toll

Q 1/2 [1 + 2 exp (-C/kT)]n-3. (6)

This form of the partition function is appropriate for a polymethylene chain,
for example, and was used in the previous reportl 6 for analysis of the data
on n-alkanes. However, most polymers of interest exist as helixes in the
crystalline state, where any chain may form a helix of either screw sense.
Hence, we expect that in general the chain bonds in most polymers will have
at least two conformers of low energy, and Equation (6) does not apply.
Furthermore, it has by now been abundantly demonstrated that correlations
of rotations of adjacent bonds cannot be ignored in the case of chains
bearing substituents on alternate chain atoms.

C. Empirical Estimation of Free Volume

In a commentary on the Gibbs-DiMarzio theory, Moacanin and Simha 1 7

presented the following analysis of the factors which determine the
transition temperature. The product Tg(L-CXG) has been shown to be an
almost universal constant for glass-forming materials, all the reported
values falling in the range of 0.08 to 0.13, with a mean of 0.113.18 G(L
and (XG are the expansivities of the liquid and glass, respectively. If
it is assumed that the theoretical transition temperature T2 is related to the
experimental glass temperature by T2 ' 0.8 Tg, then T2(O(L-(jG) • 0.0904.
The Gibbs-DiMarzio expression for T((YL-CXG) is
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) z(vS x2 z~x z Xosx )-
2(a L-2G ((....l) vo)7)2kT2 kT2

For long chains this quantity is independent of x and only slightly
dependent on z. The "universal" value of T2 (01L-OG) corresponds to
Vo(T 2 ) _= 0.025.17 This coincides with the WLF value of the free volume
at Tg, but refers of course to the free volume at the lower temperature T2 .

The free volume is determined by the intermolecular pair
potential a according to the following relationshipll,1 4

z/2-l z/22

In (V0  /SO ) = zOYSx 2 /2kT. (8)

For Vo = 0.025 and z = 4, O(/kT2 = 1.30.

If Equation (6) is used for the internal partition function,
then it can be seen by inspection of Equations (5) and (6) that _/kT is
a function of Vo and z only (for x--> c0). For Vo = 0.025 and z
e/kT 2 = 2.17. The near coincidence of (X/kT2 and C/kT2 was observed by
Eisenberg and Saito, 19 who concluded that for all practical purposes the
Gibbs-DiMarzio theory is a one-parameter theory. However, this result is
a consequence of the use of Equation (6) for all polymers. The more
general relations (2) and (3), with statistical weight matrices
appropriate for each individual type of chain, wculd give rise to a wide
spread in C/kT2 for different polymers, although GX/kT2 must still be
close to the universal value of 1.30 (for z = 4 and x--> (o).

D. Calculations for Polymethylene Chains

The free volume fraction Vo(T 2 ) has been found empirically to
be approximately 0.025 for a wide range of materials, as discussed above.
This has the great pragmatic advantage of reducing the number of adjustable
parameters in the comparison of Equation (5) with experimental data. In
the last progress report16 the To values for the n-alkanes were fitted to
Equation (5) by using Equation (6) for the partitTion function (i.e.,
ignoring correlations of rotations). A method of estimating the
intermolecular pair potential (X was proposed and the free volume and flex
energy were evaluated for selected values of z. The best fit was found to
be z = 6, Vo(To) = 0.04 and E = 340.0 cal/mole.1 6  Since we now wish to
allow for the correlations of rotations of neighboring bonds, and this
will introduce one more parameter, the free volume fraction will be fixed
at its universal value of 0.025 for the present purpose.
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The To values for n-alkanes were given in Reference (16).
They represent the best value, obtained by a non-linear least-squares
analysis, of this parameter in the equation

log (7ý/d) = log A + B/(T-To) (9)

The assumption is made that since log (N/d)-->oo as T--*To, To corresponds
to the transition temperature T2 . In order to compare To(x) with the
predictions of Equation (5), we must have the statistical weight matrix
for the ith bond in the chain, where i = 2, 3, --- , n-2. Bond 2 is
assumed to have three conformers T, G and G' with statistical weights 1,
C'and ' respectively, relative to the trans (T) conformation. Hence

1 0 0

U2 = 0 o 0 (10)
0 0 O'j

where exp (-CI/kr). Subsequent bonds encounter a situation of much
higher energy whenever gauche rotations of opposite sign occur in pairs.
This is the well-known pentane effectl9 and results in an additional
factor W= exp (-C 2 /kT) in the statistical weight, which is so small
as to virtually exclude such states. Hence for all subsequent bonds i
where i = 3, 4,---, n-2 the statistical weight matrix has the form

U= 1 ' Oij (11)

The partition function may be evaluated by the use of Equation (3) and
substituted in Equation (5). For a constant free volume fraction at T2
this takes the form



z-2 F 2(l-Vo) 2(l-Vo)
0=- in 1 + - J

2 z zx

z/2
Vo 2(l-Vo) 2(I-Vo) 1

l-Vo z + zx vo

+ x in [(z-2)x+2](z-l)/2} + x" [in Q + T2 (d in Q/dT)T2] (12)

Assuming that each methylene group occupies one lattice site, then x is
simply the number of carbon atoms in the chain.

In calculating the partition function for a polymethylene chain,
it is possible to take advantage of the symmetric properties of the
coefficient matrix u2 un-3 and obtain a relatively simple explicit formula.
It can be derived in the following manner.

1 0 01 1 1

Let u21/24- 0 o] and A=L i 1
0 0-0 1 1J

Then since

U AU , (13)

we may write

Q = JTU l/2(U l/2AU21/2)n-3U21/2J (14)

Since U2 1/2AUI 1/2 is symmetric

HT (U2 l/2Au2 l/2 ) H =J/ (15)

where A is the diagonal matrix of eigenvalues of U21/2AU2 1/2 and the
columns of H are the corresponding normalized eigenvectors. Hence
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-T U2 1/2 (HA fjT)n-I 111j, (16)

LT n3  j>nX. (18)

X, (19)

2f\_, 1+ o(1+WJ) + [62(i+Uj)2 + 26(3-WJ) + 1/2(20)

2 21/

C2
2 =i60'+ 2[1-(Z(1+Wj)-Cl] 2  (23)

2 2
CS = 160(ý+ 2 [1- Cf(1+LJ)+Cj1 (24)

then the eigenvector matrix is given by

0 -401/2/C2 -4012C

H 2-1/2 [-O +)-]/ 2  [1-r C(i+tJ)+c,]/c3  (5

8



It thus follows that = 0 and

3- + n- 3  (26)

=16o x2 + 1 (27)
2 C2 CS2

With this substitution in Equation (12), and remembering that
(T= exp (-Q1/RT2 ) and W)= exp (-E 2 /RT 2 ), the transition temperature

T2 (n) may be calculated for given values of (-Gl, - 2 , z and Vo. A program
was written by the Mathematical Analysis Section for fittin Equation (12)
to the To(n) values for the n-alkanes by adjusting C1 and t2, taking
Vo = 0.025 and various integral values of z. The best least-squares fit
was obtained for z = 41, C1 = 768 cal/mole and -2 = &o. The predicted
transition temperatures are compared with the observed To(n) values in
Table I.

It was found that the function T2 (n) drops too sharply for small
n to fit the To values for n< 5, so these values were excluded from the
least-squares analysis. This behavior probably results from the assumption
of a constant Vo, which may not be realistic for short chains.

The best-fit values of Cl and C2 are in excellent accord with
the values 800 and (0o, respectively, found by Nagai and Ishikawa 8 for
polyethylene. However, later analyses by Hoeve, 7 and Abe, Jernigan and
Flory3 resulted in the somewhat lower values E 1 = 500 and 02 = 1800
cal/mole. Nevertheless, the agreement is considered good enough to
substantiate the basic assumptions of the theory of the one-dimensional
cooperative model.

9



TABLE I

Predicted Transition Temperatures for n-Alkanes

Parameters: z 4, Vo = 0.025, C1 = 768 cal/mole, Q 2

Chain Length Calculated Observed
n = x-l T _°K) To (°K) Difference

5 86.842 97.581 10.739
6 103.073 lO4.91 1.837
7 113.153 113.29 0.137
8 12o.48o 119.4o -1.080
9 126.215 124.76 -1.455

10 130.907 129.27 -1.637
11 134.861 132.51 -2.351
12 138.266 135.76 -2.506
13 141.245 138.37 -2.875
14 143.887 142.00 -1.887
15 146.253 144.49 -1.763
16 148.391 148.30 -0.091
17 150.336 150.80 0.464
18 152.116 154.99 2.874
19 153.755 157.07 3.315
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2. Evaluation of the Adam-Gibbs Theory with Polymer Melt Viscosities

A. Introduction

During the last phase of this contract16, viscosity measurements
were made on a number of low molecular weight polymers at temperatures
between 25 0 C and 900 C. The purpose of this work was to amass polymer
viscosity data over a broad enough range of molecular weights and tempera-
tures so that current theories of molecular motion in polymers could be
evaluated. In this report, we will discuss the Adam-Gibbs theory2 0 of
relaxation in glass-forming liquids.

B. Estimation of the Segmental Free-Energy Barrier

In a recent paper, 2 0 Adam and Gibbs described a theory for
cooperative relaxation processes in glass forming liquids, with emphasis
on polymer behavior. An equation was derived linking the relaxation time
or viscosity to a free energy barrier:

log = A' + sc*AL (28)
2.303 kACpT in T/T2

Here Sc* is the minimum configurational entropy of the critical region
involved in the relaxation process, A is the free energy barrier per

mole of backbone atoms, \Cp is the change in specific heat in passing
through the glass transition, and T2 is the equilibrium second-order
transition temperature.14 A' ig a term which, according to transition
state theory, 2 2 is proportional to the reciprocal of the volume of a
moving segment. Thus, it is more reasonable to use the kinematic
viscosity, 1, in Equation (28).23 The critical configuration entropy,
Sc*, will have a minimum value of k ln 2, assuming that there must be a
minimum of two configurations available to the critical region. It is
conceivable that sc* might be greater than two in some cases. In this
discussion, however, we will assume that sc* is k ln 2. Substitution into
and simplification of Equation (28) now yields

B
log y A + , (29)

T ln T/T 2

where

B = *' = 0.301 Ac (30)
2.303 kAcp ACP
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During the last phase of the contract,1 6 the best-fit values of A, B, and
T2 were evaluated for polypropylene, poly(propylene oxide) (PPG), and
poly(chloritrifluoroethylene) (PCFE). These are given in Table II.
With these parameters, a value for Sc*, and knowledge of ACp, it should
be possible to estimate Ag . With this in mind, we set out to analyze
the least-squares results obtained for Equation (29) with our polymers.

Values for A Cp are available for a relatively small number of
polymers. Therefore, it was necessary in some cases to utilize the
"universal" value of crCp of 2.7 calories per mole of chain atoms per
degree suggested by Wunderlich.24

In addition to our own data, we analyzed some results for
polyisobutylene and polystyrene published by Fox and Flory. 2 5 Values of
B were taken from results computed previously for the Fulcher Equation,1 6 ,31

B
log7 - A + , (31)

T-To

when it was observed that the difference in B as determined with Equations
(29) and (31) was less than ten per cent. Thus, the error in Ag
calculated with Equation (31) will be relatively small. These B values are
given in Table II. Table III is a compilation of the results. We have
included in the table a listing of cohesive energy densities, calculated
according to Small's36 method, and a listing of glass transition
temperatures.

Examination of Table III shows that Aka varies in about the way
one would anticipate, based on molecular structure considerations.
Polyisobutylene has the largest value as one might expect from its tight
structure. Poly(propylene oxide) has the smallest value for A/I. The
ether linkage makes a large contribution to backbone flexibility in this
polymer. The fact that the smaller values of A/I lie around 3 kcal per
mole is an indication that the barriers to internal rotation around
backbone C-C bonds may be more important than interactions between non-
bonded neighboring groups in determining transport properties for some
polymers, but in general the non-bonded interactions are significant.

C. The Size of the Critical Region at Tg

We have reported in the past16,27 that activation free energies
for a number of polymers have values near 25 kcal per mole at the glass
temperature. Based on the A 9 values we obtained, this suggests that
the size of the cooperative region involved in viscous flow may be quite
small. A full treatment follows. In the Adam-Gibbs derivation, the free
energy of activation AG* is given as z*Ag, where z* is the number of
monomer units contained in the smallest region capable of rearranging.

12



TABLE II

The Best-Fit Parameters in the Adam-Gibbs Equation

Polymer Mn x 10-4 A B T2

Polypropylene 0.090 -1.182 841 171.6
0.121 -1.220 974 172.4

Poly(propylene oxide) 0.046 -0,786 392 180.7
0.125 -0.336 403 177.0
0.208 -0.070 409 175.3
0.362 0.036 619 148.7

Poly(chlorotrifluoroethylene) O.064 -o.982 338 164.8
0.082 -1.223 521 186.5
0.105 -1.811 938 166.0

Polyisobutylene 0.076* - 1064 -
0.54* - 1242 -
1.29* - 1318 -

Polystyrene 0.359* - 645 -
0.665* - 624 -
1.330* - 654 -

* Viscosity-average molecular weight.
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TABLE III

Values of Am Computed with Equation 3

A Cp, Tg,
Polymer Mn x l0- cal/mole deg. kcal CED -C

Polypropylene
C-60 0.090 2 . 3 a 6.4 62 -50
C-175 0.121 2.3a 7.4 62 -35

Poly(propylene oxide)
P-400 0.046 2 3.5 59 -69
P-1200 0.125 2 .7 b 3.6 59 -67
P-2000 0.208 2 .7 b 3.7 59 -67
P-4000 0.362 2 . 7b 5.6 59 -66

Poly(chlorotrifluoroethylene)
FS-5 o.o64 2 .7 b 3.0 62 -
S-30 0.082 2 . 7 b 4.7 62 -

LG-160 0.105 2 . 7 b 8.4 62 -50

Polyisobutylenec o.o76g 2 . 6 7d 9.4 60 -
O.54g 2 . 6 7d 11.0 60 - 76 e

1.299 2.67d 11.7 60 -68e

Polystyrenec 0 . 3 5 9g 3.5f 7.5 75 75
o.665g 3.5f 7.3 75 77
1.3309 3.5f 7.6 75 86

a Taken from T. P. Melia, J. Appl. Chem., 14, 461 (1964).
b Based on the universal value observed by B. Wunderlich. See Ref. (24).
c All polyisobutylene and polystyrene viscosity data are taken from T. G.

Fox, Jr., and P. J. Flory, J. Appl. Phys., 21, 581 (1950); and T. G.
Fox, Jr., and P. J. Flory, J. Phys. Chem., 55, 221 (1951). Corrections
for the polystyrene molecular weights were published later in T. G. Fox
and P. J. Flory, J. Polymer Sci., 14, 315 (1954).

d See Ref. (24), B. Wunderlich.
e Polyisobutylene glass temperatures were based on the relationship

proposed by Fox and Flory in 1950: Tg, °C = -63 - 6.9 x 104 /M. See
T. G. Fox, Jr., and P. J. Flory, J. Appl. Phys., 21, 581 (1950). The
value they propose for Tgczo, -63*C, is several degrees higher than the
accepted value, but agrees well with differential thermal analysis values
obtained in these laboratories.

f Taken from F. E. Karasz, H. E. Bair, and J. M. O'Reilly, J. Phys. Chem.,
69, 2657 (1965).

g Viscosity average molecular weights of fractions.
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They recognized that A G is temperature dependent. This temperature
dependence is totally contained in z*, and it is assumed that M/ does
not vary. The assumption of a temperature independent A4 is not especially
appealing, since it seems reasonable to expect non-bonded interactions
to be quite temperature sensitive. However, if one assumes that
rotational barriers constitute most of AU , then the temperature indepen-
dence is more reasonable. The results given in Table III indicate that the
situation varies considerably from polymer to polymer, but we will continue
our development assuming fixed A4 values. The free-energy of activation
can be obtained from the terms in Equation (29) using the identity

AG*B
-- B(32)

2.303 RT T ln T/T 2

which leads to
RB

A G* = (33)
log T - log T2

Now, combining Equations (30) and (33) we obtain

0.60
z* = •.6 (34)

(log T - log T2 )ACp

Thus, the size of the cooperative region is a function only of ACp and
the ratio T/T 2 . Of course, we assumed here, as before, that sc* is equal
to k ln 2, i.e., that the critical region is capable of rearranging to only
one other configuration. Values of z* at the glass temperature have been
determined with Equation (34) and are given in Table IV.

It is apparent that the values of z* are too small to be in
agreement with reality. This may be the result of underestimating the
configurational entropy of the critical region. If we assume that z* is in
error by some fixed factor, then it still is possible to obtain a meaningful
interpretation of the data.

Since z* probably reflects intermolecular barriers (due to long
range non-bonded interactions) more than rotational barriers, it seems
reasonable to expect large values of z* at the glass temperature (zg*) in
polymers where the transition is primarily the result of large intermolecular
potential energy barriers. The intermolecular barrier exists because
rotation around chain bonds requires sweeping through relatively large
volumes of space. This rotation by itself would require a tremendous amount
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TABLE IV

The Size of the Critical Region at Tg Based on Sc* = k in 2

Cp, z*,
Polymer Mn x 10-4 cal/mole log Tg/T 2  Chain Atoms

Polypropylene 0.090 2.3 0.113 2.31
0.121 o.141 1.85

Poly(propylene oxide) 0.046 2.7 0.052 4.27
0.125 O.065 3.42
0.208 0.070 3.17
0.362 o.144 1.54

Poly(chlorotrifluoroethylene) 0.105 2.7 0.128 1.74

Polyisobutylene 0.54* 2.67 0.200 1.12
1.29* 0.248 0.91

Polystyrene 0.359* 3.5 0.060 2.85
0.665* 0.047 3.64
1.330* 0.054 3.17

* Viscosity average molecular weights.
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of energy because of non-bonded interactions. However, it seems likely
that simultaneous motions in the vicinity of the rotation reduce the
barrier height considerably.

What gives rise to large intermolecular barriers? In general,
it must be any factor which would increase the long-range non-bonded
interactions, e.g., bulky, rigid side groups; strong dipoles; hydrogen
bonding capacity; ionic and ion-dipole-interactions; and close packing.

In polymers with large rotational barriers, it seems likely
that backbone relaxation times will approach the Tg range ( -0o3 seconds)
before the intermolecular barrier has grown very large. Therefore, z* will
remain small. Polymers with small rotational barriers and no large pendant
groups, like polypropylene oxide, are influenced largely by packing (and
hydrogen bonding to some extent), which leads to a low glass temperature
and a large z* value.

Further consideration of Equation (34) is in order. If we
assume that LCp is at or near its most likely value of 2.7 cal deg- 1 mole- 1 ,
then z* is a function of T/T 2 only. A small value for T/T 2 leads to a
large value for z* and vice versa. In order to agree with the present
argument, a small T/T 2 ratio corresponds to a large intermolecular barrier
and a large T/T 2 ratio corresponds to a relatively large rotational barrier.
This is exactly what one would predict, since the intermolecular barrier
will increase sharply with decreasing temperature in the neighborhood of
Tg, while the rotational barrier will be insensitive to temperature.
Thus, the greater the influence of the rotational barrier, the more closely
the polymer will conform to Arrhenius behavior.

D. An Alternate Approach to z* Based on Transition State Theory

Unreasonably small values of z* and large values of 1u result
when the k In 2 approximation for the configurational entropy of the critical
region is used in the calculations. This makes it rather difficult to
obtain the maximum benefit from the Adam-Gibbs theory, for it is far from
clear what value of sc* would be appropriate. There is, however, at
least one other way of estimating the size of the critical region z*, and
this will be discussed here.

If we start with the assumption that the critical region is
spherical, it can be seen that the radius of this region in augstroms is
given by

r 3 Z*Vb(
1 0 24) 1/3

r 7(35)
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where Vb is the molar volume per backbone atom in cc, z* is the number of
backbone atoms in the region, and N is Avogadro's number.

We wish to obtain the volume of the critical region at the glass
temperature. In order to do this we must first determine the value of
z* at the glass temperature.

In 1957 Gee2 8 suggested that the activation process in the flow
of liquids involves an expansion equal to,ý V4, the volume of activation,
in the neighborhood of the molecule which is going to move. In order to
relate ATV- to the cooperative region, it is reasonable to use the approach
of Cohen and Turnbull.2 9 They proposed that redistribution of the free
volume in the cooperative region leads to local hole formation, which in
turn permits motion. Thus, the critical or cooperative region is essen-
tially a region with close to the macroscopic density, but with enough
free volume so that a density fluctuation within the region can give rise
to an activated site. If, as Adam and Gibbs 2 O suggest, the cooperatlve
region is the smallest one that can rearrange, then it follows that/_\v4

must be very close to the total free volume of the critical region. This
means that

A V = vz* , (36)

where v is the free volume per backbone atom (on a molar basis). Now we
define the free volume fraction f as v/Vb and obtain the following for z*:

AV,
z* : (37)

f Vb

Accepting the WLF 30 free volume definition, we have 2.303 clg in place of
f at the glass temperature. In terms of the Fulcher 3 l equation parameters,
f is given by (T-To)/2.303 B, where B and To are adjustable parameters. Both
free volume fractions are identical at Tg. In our case, since we have
determined the Fulcher parameters for the polymers of interest, we will use
the form

2.303 AV* B
z*= (38)

Vb (T-To)

with T equal to Tg.
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It remains now to evaluate AVi. Since the pressure dependence
of the Gibbs free energy at constant temperature is simply the volume,
it follows from transition state theory that

( • lnT AVd
-- r(39)

) RT
T

Here T is the average relaxation time for the principal (0) process in
the system. We make the assumption that T is independent, or nearly so,
of the type of measurement.1 6 What is necessary, then, is the variation
of r with pressure at constant temperature. Using the ( 6 log T/6p)T
results of Williams 3 2 for PPG and of O'Reilly3 3 for PVAc and PVC, we have
determined Av* at several temperatures for each polymer and then
extrapolated to the glass temperature. Vb is evaluated at the glass
temperature using the expansion coefficient and specific volume measured
at higher temperatures.

Finally z* is calculated using Equation (38). The values of z*
at Tg are presented in Table V along with L V4, Vb, and f measured at or
extrapolated to the glass temperature.

TABLE V

The Size of the Critical Region and
Associated Parameters at the Glass Temperature

Polymer z* AV*, cc/mole Vb, cc/mole f

Poly(propylene oxide) 220 140 17.7 0.036

Poly(vinyl acetate) 341 265 36.1 0.025

Poly(vinyl chloride) 8o4 46o 22.9 0.025

It is apparent that the values of z* at Tg are much larger here
than those obtained using the Adam-Gibbs theory with the k ln 2 approximation
for the configurational entropy of the critical region. Therefore, it
appears that the entropy is much greater than the minimum value assumed
previously.

Proceeding to the calculation of the radius of the critical region
using Equation (35), we find that r equals 11.6, 17.0, and 19.4 angstroms
for poly(propylene oxide), PVAc, and PVC taken in the same order.
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E. The Size of a Relaxing Chain Segment

We now proceed to an important aspect of the problem--the
computation of the average number of backbone bonds in a single continuous
chain in the critical region. This quantity should be a measure of the
maximum number of backbone bonds in a continuous polymer chain perturbed
by rotation about a single backbone bond within the chain. We will assume
that the chains are of infinite molecular weight, thus eliminating chain
ends, and possess their unperturbed dimensions. Consider a sphere of
volume equal to that of the critical region. Each chain which passes
through the sphere is cut by the surface at two points. The problem is
to determine the average number of backbone bonds for any single chain
between the point of entry and the first point of departure from the sphere.

Although an analytical solution to this sort of problem may
exist for long chains with free rotation, the complexity added by short
chains and rotational angle correlations makes a solution very difficult
to obtain. On the other hand, the problem can be handled easily for short
chains with any desired rotational correlations using Monte Carlo techniques.
Therefore, we selected the latter approach.

The necessary computations were performed on an SDS 925 digital
computer using a Fortran II program. In order to obtain the desired result,
it was necessary to formulate a correct model. The important features of
the final model are explained below:

(1) Chain Generation. If one starts with a central point
representing a tetrahedral carbon atom, it is possible to generate eight
"bonds" emanating from it, which determine two mutually exclusive tetrahedral

lattices. The x, y, and z components of each bond vector are assigned values
of + 1, giving a bond length of 13. It is easily shown that the four bonds
in the first lattice axe ill (x = -1, y = 1, z = 1), l1l, li, and Ull. The
four bonds in the second lattice are l1T, l1lT, ill, and i1T. For each of
these initial bonds or steps, the next step is obtained by changing the sign
of one of the components. Thus, for each step, there are three possible
second steps. One of the three is selected on the basis of a random
number generated by the computer program. Succeeding steps are taken in
the same way.

This program starts by generating a point randomly on the surface
of the sphere. Then an attempt is made to generate eight random walks
through the sphere, each walk initiated by one of the eight first steps.
Each of the four successful walks is continued until it again passes
through the surface of the sphere. The points of entry and exit and the
total number of steps, including fractions, are recorded and stored for
further computations.
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(2) Entry of a Chain into the Sphere. For situations where
the bond length is within approximately two orders of magnitude of the
radius, it is essential that the direction of the first chain bond
entering the sphere be selected randomly. In three dimensions, this
required that the angle @ between the bond and the surface at the point
of entry have a probability density proportional to cos 9. There are
several approaches to this problem. The one used was to place the
starting point of the chain randomly on the surface of the sphere without
changing the eight initial step vectors. In order to generate a point
on the surface, we first generated a point randomly inside the sphere and
then projected it to the surface.

(3) Internal Rotational Angles. One of the advantages of the
tetrahedral lattice is its equivalence to the rotational isomeric model
with allowed rotational angles of 0*, 120°, and 240° (measured from the
trans portion). This makes it possible to incorporate any desired
correlations among rotational angles into the computation at the expense
of computer time only.

The simplest approximation is to assign statistical weights to
trans and gauche sequences based on experimental determinations of the
flex energy, i.e., the energy difference between trans and gauche states.
Results obtained from the measurement of stress-temperature coefficients
of cross-linked networks and from the temperature dependence of the
intrinsic viscosity of unperturbed polymers indicate that real chains can
be represented quite well in most cases with flex energies in the range
of 300 to 500 calories per mole. Therefore, we used both 300 and 500
calories as flex energies in the computations and 3000K as the temperature.

In performing the computations, it was assumed that all bonds
in the chains were of equal length. This is a reasonable assumption for
the polypropylene oxide chains as well as the carbon backbone chains,
since the C-0 bond is only 0.03 angstroms shorter than the C-C bond.
Since flex energies of 300 and 500 cal/mole gave chains with nearly
identical configurational properties, we present only the results for
500 cal/mole in Table VI.

TABLE VI

Results of Monte Carlo Simulation of Chains
in Cooperative Region at Tg

03 Average Mean Square
Volume, A Radius, Number End-to-End

Polymer z* Vb A of Bonds Distance, 12

PPG 3,890 11.6 9.8 48
PVAc 12,300 17.0 15. 75
PVC 18,400 19.4 17. 86
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It is interesting to find that the number of bonds in a single

chain contained in the critical region is on the order of 10.

F. Cell Model for the Glass Transition

The results described in the preceding section agree surprisingly
well with the cell theory developed earlier in this contract, 2 7 which gives
good predictions of the glass temperature with chain segments of 5 or 10
atoms. As a test of the results, we used the cell theory to predict Tg
values for each of the poly(propylene oxide) polymers studied. The
theory was applied using the best fit values of A, B, and To in the
viscosity equation

B
log =A + log )0 + - 1 (40)

T-To

where 0 is the polymer density in g/cc. The equation for the cell model
was rearranged to the form

B
Tg = To + (41)

2 4 7WN, 5 tR (<h->o/M)TgM*
- log - log M + log -A

3 3s 3 6

where

N = Avogadro's number,
s = 10, the average number of bonds in a single continuous

chain in the critical region,
M* = the effective weight-average molecular weight,
M' = the molecular weight per backbone atom,

t = the characteristic time for Tg, taken as lo3 seconds,
R = the gas constant, 8.31 x 107 ergs/mole deg.,

<h 2>/M the ratio of the unperturbed mean square end-to-end distanceto the molecular weight, a quantity tabulated in the
literature for many polymers.34

The effective molecular weight M* depends on the existence of chain
entanglements in the melt. Below a molecular weight Mc, the melt
viscosity is linear in the first power of the weight average molecular
weight. In the region above Mc, the viscosity is linear in the molecular
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weight to the 3.4 power. This phenomenon has been attributed by Bueche 3 5

to the formation of chain entanglements. The effect of entanglements is
to increase the effective molecular weight by forcing entangled molecules
to act as single large molecules. Thus, above Mc the effective molecular
weight is linear in the actual molecular weight to the 3.4 power. Below
Mc the value of M* is conveniently equal to M.

In considering equations of the same sort as Equation (4o),
Fox,3 6 Bueche, 3 7 and others have observed that the molecular weight
dependence of the melt viscosity is contained entirely in'the parameter
A as long as the molecular weight has reached a large value, in the
neighborhood of 105. This means, of course, that A and log M* are
directly proportional and therefore the denominator in Equation (41)
is essentially independent of the molecular weight. It has been observed
by us and others that B and To are also independent of molecular weight
at sufficiently high molecular weights. Thus, Tg itself will be independent
of the molecular weight in high molecular weight polymers. This is in
complete accord with experimental results.

Commercial low-molecular-weight poly(propylene oxides) are known
to have very narrow molecular weight distributions, with Mw/Mn less than
1.10. Therefore, the number average molecular weights were used in the
cell model calculations.

The predicted and experimental Tg values are tabulated below.

TABLE VII

Predicted Values of Tg of Poly(propylene oxides),
Based on Cell Model

Glass Temperature, OK
Molecular Weight (Mn) Predicted Experimental (I)TA)

46o 210 204
1250 207 206
2080 206 206
3620 192 207

In general, there is excellent agreement between prediction and experiment.
However, in the case of the highest molecular weight polymer, the predic-
tion is 15 degrees in error. This may be the result of a rather poor
fit of Equation (40) to the viscosity data for this polymer.1 6
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As a result of this study, we conclude that the Adam-Gibbs
theory is a very logical approach to the problem of motion in glass-
forming liquids. It includes at once the concept of an equilibrium
second-order transition temperature and the experimentally observed
effects of time-dependent phenomena on the transition. Unfortunately,
however, it is not a simple matter to obtain quantitative information
from the theory, since this hinges on the estimation of the configurational
entropy of the critical region.
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